Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

نویسندگان

  • Sohela Shah
  • Ukina R. Sanford
  • Julie C. Vargas
  • Hongmei Xu
  • Annamiek Groen
  • Coen C. Paulusma
  • James P. Grenert
  • Ludmila Pawlikowska
  • Saunak Sen
  • Ronald P. J. Oude Elferink
  • Laura N. Bull
چکیده

BACKGROUND Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. METHODOLOGY/PRINCIPAL FINDINGS We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. CONCLUSIONS/SIGNIFICANCE Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.

Mutations in ATP8B1 cause severe inherited liver disease. The disease is characterized by impaired biliary bile salt excretion (cholestasis), but the mechanism whereby impaired ATP8B1 function results in cholestasis is poorly understood. ATP8B1 is a type 4 P-type ATPase and is a flippase for phosphatidylserine. Atp8b1-deficient mice display a dramatic increase in the biliary extraction of chole...

متن کامل

Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.

Type IV P-type ATPases (P4-ATPases) are believed to translocate aminophospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. The yeast P4-ATPases, Drs2p and Dnf1p/Dnf2p, flip nitrobenzoxadiazole-labeled phosphatidylserine at the Golgi complex and nitrobenzoxadiazole-labeled phosphatidylcholine (PC) at the plasma membrane, respectively. However, the flippase activiti...

متن کامل

In-silico Evaluation of Rare Codons and their Positions in the Structure of ATP8b1 Gene

Background: Progressive familial intrahepatic cholestases (PFIC) are a spectrum of autosomal progressive liver diseases developing to end-stage liver disease. ATP8B1 deficiency caused by mutations in ATP8B1 gene encoding a P-type ATPase leads to PFIC1. The gene for PFIC1 has been mapped on a 19-cM region of 18q21-q22, and a gene defect in ATP8B1 can cause deregulations in bile salt transporters...

متن کامل

Target-organ specificity of autoimmunity is modified by thymic stroma and bone marrow-derived cells.

Physical contact between thymocytes and the thymic stroma is essential for the establishment of self-tolerance, and Aire in thymic epithelial cells plays an important role in this action. As expected, the autoimmune phenotypes of Aire-deficient mice are thymic stroma-dependent. Interestingly, the spectrum of the organs involved differs depending on the genetic background of non-autoimmune-prone...

متن کامل

Influence of genetic background on genetically engineered mouse phenotypes.

The history of mouse genetics, which involves the study of strain-dependent phenotype variability, makes it clear that the genetic background onto which a gene-targeted allele is placed can cause considerable variation in genetically engineered mouse (GEM) phenotype. This variation can present itself as completely different phenotypes, as variations in penetrance of phenotype, or as variable ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010